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Abstract

User-to-user interactions have become ubiquitous in
Web 2.0. Users exchange emails, post on newsgroups,
tag web pages, co-author papers, etc. Through these
interactions, users co-produce or co-adopt content items
(e.g., words in emails, tags in social bookmarking
sites). We model such dynamic interactions as a user
interaction network, which relates users, interactions,
and content items over time. After some interactions,
a user may produce content that is more similar to
those produced by other users previously. We term
this effect social dependency, and we seek to mine
from such networks the degree to which a user may
be socially dependent on another user over time. We
propose a Decay Topic Model to model the evolution of
a user’s preferences for content items at the topic level,
as well as a Social Dependency Metric that quantifies
the extent of social dependency based on interactions
and content changes. Our experiments on two user
interaction networks induced from real-life datasets
show the effectiveness of our approach.

1 Introduction

1.1 Motivation User interactions in a dynamic so-
cial network provide insights for the evolution of rela-
tionships among a set of users. The user interactions
in this dynamic social network lead to the production

or adoption of content items covering a set of evolving
latent factors. Using these evolving latent factors, we
aim to derive the social dependency relationships among
the users. We define social dependency as a temporal
correlation between (a) the latent factors in the current
time step of the target user, and (b) the latent factors
in the previous time step of other users she interacts
with. The degree of correlation capture the extent to
which the target user depends on the other users, which
explains the change in her latent factors.

Social dependency can be useful in many differ-
ent applications including diffusion of innovations, rec-
ommendation of new products, measurement of influ-
ential users, and prediction of item adoptions, etc.
[2, 3, 18, 23, 25, 32]. The strength of social dependency
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links also allows us to determine the cohesiveness of
users, which can be used to divide users into smaller
communities [14, 22, 28].

1.2 Social Dependency Modeling in User Inter-

action Networks User Interaction Network. A
user interaction network consists of interactions that
produce new content items over time. We consider
a general approach of defining an interaction d (e.g.,
an email exchange, a published paper) as a tuple
〈Ad,Wd, τd〉 where Ad, Wd and τd denote the set of
users, content items (e.g., words in an email or pa-
per), and time point of the interaction respectively. We
represent a set of interactions over a time period as
a graph called user interaction network, as shown in
Figure 1. Users, interactions, and content items are
the vertices in the user interaction network example.
An edge connects a user a to an interaction d taking
place at time τ , which a participates in. Similarly, we
draw an edge from d to each content item w produced
through d. This network has three interactions: d1 =
〈{a1, a2}, {w1, w2}, τ1〉, d2 = 〈{a1, a3}, {w3, w4}, τ2〉,
and d3 = 〈{a2, a3, a4}, {w1, w2}, τ3〉.

The user interaction network or interaction network
can be found in many situations involving user com-
munication of one form or another. In an email-based
user interaction network, users produce email content
as they interact with other email users by replying to
email threads. In a newsgroup-based user interaction
network, users submit news posts as they respond (“in-
teract”) to other users’ news posts. As Web 2.0 and so-
cial media sites become very popular, we can find even
more interaction networks.

Social Dependency. From the interaction link-
ages among users and their evolving latent factors, one
can observe the dependencies among users. An email
user may change her email content after exchanging
emails with another email user. Similarly, a newsgroup
user may change news content in her posts after read-
ing news posts from another user. In both cases, we say
the first user is socially dependent on the second user if
the former produces content that is more similar to the
latter after some interaction between them.

We use the scenario in Figure 1 to illustrate the
notion of social dependency. Suppose that the three



Figure 1: User Interaction Network

interactions occur at different time points τ1 < τ2 < τ3.
At τ3, the interaction between a2, a3, and a4 result in
the co-production of content items w1 and w2. We are
interested in whether a4 is socially more dependent on
a2 or on a3 for producing the items w1 and w2. The
dotted lines represent the social dependency links, the
direction implies who is dependent on whom, and the
weight signifies the extent of dependency. To answer
this question, it is instructive to look at the previous
time points τ1 and τ2. It is evident that since a2, but
not a3, has been previously associated with w1 and w2

before τ3, so it is likely that a4 is socially dependent on
a2 for the production of w1 and w2, rather than on a3.

Social dependency is therefore defined based on two
key criteria: (a) interactions between two users; and
(b) content changes of the user who depends on the
other user. As interactions can be ordered by time, we
study precedence between interactions by considering a
snapshot representation of interactions by sampling the
network at different time points. From the snapshots,
we derive the set of interactions occurring at time step

t by Dt = {d|τd ∈ t}. For a sequence of multiple time
steps T , we have interactions DT =

⋃
t∈T Dt.

The second criteria, content change, can be modeled
in different ways. A straightforward approach is to
model content as a bag of words and content change
is then measured by difference in word usage. This
approach however does not work well as word usage can
be noisy. Instead, we adopt the topic modeling approach
which determines the latent factors as topics behind
the observed words. Content change can therefore be
measured by a change in topics.

Problem Statement. The research problem of
modeling social dependency is thus defined by: Given

a set of users with interactions DT over a sequence of

time steps T , determine the social dependency between

ai on another user aj at time step t, Iai,t(aj), for

every ai, aj ∈ A and every t ∈ T . A is the set of
all users in DT . Iai,t(aj) ∈ [0, 1] such that 0 and

1 represent no dependence and complete dependence
respectively. Social dependency is time step specific so
as to capture its evolution. The social dependencies may
exist among users at a time step only when these users
have interactions within the same time step. Otherwise,
they are deem to be socially independent of one another.

Modeling social dependency comes with the follow-
ing research challenges.

• Dynamic changes in topics of interaction content.

The existing topical models are designed primarily
for static content. To cope with emerging new
interactions and users, we need to develop new and
efficient topic models that can model dynamically
changing interaction content.

• Missing user interaction data. User interactions
do not occur with the same intensity in all time
steps. They may be dense in some time steps, but
sparse or even missing in others. Even in the case
of missing data for a given user in a time step, we
still need to model how the user’s topic preferences
are related to those of other users.

• Smooth transition of user topic preferences. Users
normally do not change their topical preferences
abruptly. Hence, the challenge is how to model the
smooth transition in user’s topical preferences.

• Dependency weight assignment. It is expected that
a user may be dependent on more than one other
user, each potentially with a different weight. Thus,
we need to develop the principles in which these
weights can be derived from the interactions.

Contributions. In the following, we summarize
our research contributions to the social dependency
modeling problems as follows:

1. We model how a user’s latent factors may change
over time. Our proposed model, called Decay Topic

Model, measures the personal topic preferences of
a user at every time step. This model is novel in
that unlike previous topic models (see Section 2)
where documents have fixed topic distributions and
only the topics may change, in our model users
may have different affiliations to topics over time.
Furthermore, a decay factor is included in the
topic model to moderate the rate of change in
topic preferences of users so as to create smooth
transition of topic preferences as well as to address
missing user interaction data.

2. Given the interaction links among users and topic
preferences determined by decay topic model, we
propose a Social Dependency Metric that measures



how user a depends on other users in producing or
adopting content. The social dependency metric is
topic-based and it considers the topic preferences
of a in the current time step and other users’ in the
previous time step. This notion of changing social
dependencies of a user that also takes into account
the changing topic preferences of others that the
user depends on, is a novel concept.

3. We apply social dependency to the prediction of
future user topic preferences on two real datasets
extracted from DBLP [15] and ACM Digital Li-
brary [1]. Compared with a baseline method, our
proposed prediction method using social depen-
dency derives more accurate prediction of future
topic preferences.

Organization. The rest of the paper is organized
as follows. Section 2 will discuss the past research
done on modeling the temporal dynamics of content and
user interactions. In Section 3, we describe the decay
topic model and our measure of dependency. We then
proceed to evaluate our method in Section 4. Finally
we conclude our paper in Section 5.

2 Related Work

Social correlation has been studied with regards to dif-
ferent kinds of activities or interactions. Fond and
Neville [13, 21] explained that social correlation was a
result of alternating transition between homophily and
influence among users. Crandall et al. [9] earlier showed
that there are feedback effects alternating between so-
cial influence and social selection. McPherson et al. [19]
surveyed articles establishing that homophily involved
similarity factors such as socio-demographic attributes.
Singla and Richardson [26] also established the correla-
tion of search queries among instant messaging friends.

There are various related works that study the
notion of “influence”, although this term is not always
used in the same way. For instance, the works by Yang
and Leskovec [33], as well as Nallapati and Cohen [20]
associate influence to a node, rather than to an edge as
we do. The notion of k-exposure [8,9] assumes that the
probability of a user adopting an item is proportional to
the number of neighbors who have previously adopted
the item. This does not take into account that a user
may depend on other users with different weights and
on different topics. Goyal et al. [11] estimates influence
probability between a pair of nodes in the context of
information diffusion, in terms of explicit adoption of
items rather than at the level of topics as discussed in
our work. Tang et al. [27], Liu et al. [17] and Dietz et
al. [10] attempted to measure influence at the topic level
where the directionality is given (from cited publication

to citing publication), but they did not take into account
the temporal evolution of user’s topic distributions or
social dependency over time.

There are existing works extending topic models to
include the notions of users or time, but none really
captures all the aspects to be addressed in our work.
Rosen-Zvi et al. proposed the Author Topic Model [24]
to discover the topic distribution of authors of a doc-
ument. However, it assumes each word in a document
comes only from one author, who independently gen-
erates topics without any dependency on another au-
thor. This is different from our case, where authors
co-produce or co-adopt these content items (words) in
interactions, and become socially dependent on one an-
other through these interactions. For analyzing evolving
text documents, Blei proposed Dynamic Topic Model
(DTM) [4]. DTM was concerned with the evolution of
words within topics. Canini et al. [7] addressed yet a
different aspect, that of learning topic models for a doc-
ument collection that grows over time. Neither case ad-
dressed our concern about the evolution of users’ topic
distributions.

3 Dynamic Social Dependency

In this paper, we are interested in modeling the evolu-
tion of user interaction networks so as to derive social
dependency. In particular, we observe that there are
two main components in the evolution of user interac-
tion networks, namely: 1) the change in user preferences
for different content items over time, as well as 2) the
change in social dependency between users over time.
Each of these two components can be represented for-
mally as networks induced from the original user inter-
action network as follows.

Content Network. This network relates users
to content items that they produce or adopt through
interactions. For a given set of interactionsDt occurring
at time t, an edge (a, w) exists if ∃d ∈ Dt, a ∈ Ad∧w ∈
Wd. Figure 2 illustrates three content networks over
three time steps t1 = {τ1}, t2 = {τ2}, t3 = {τ3}, induced
from the interactions in Figure 1.

Social Dependency Network. This network
relates users to other users whom they may socially
depend on. A directed edge from ai to aj exists if ai
has social dependency on aj . The edge weight Iai,t(aj)
reflects the degree to which ai is socially dependent
on aj at time step t. A loop indicates a user ai’s
self-dependency with weight Iai,t(ai). In this work,
we assume social dependency can be inferred from
interactions. Therefore, we only draw an edge from
ai to aj at time t, if both participate in at least one
interaction at time t, i.e., ∃d ∈ Dt, ai, aj ∈ Ad. Figure 3
illustrates how the social dependency network evolves



Figure 2: Evolving Content Network

Figure 3: Evolving Social Dependency Network

over three time steps, induced from the interactions in
Figure 1.

Given a user interaction network spanning the time
period T , the problem we address here is determining
the social dependency metric Iai,t(aj) for every ai, aj ∈
A, and t ∈ T . In the following sections, we will describe
how we can model users’ content changes at the topic
level from the evolving content network. We will then
show how the temporal correlation of content changes
between users reveals the edge weights in the social
dependency network over time.

3.1 Topic Models for Evolving Content Net-

work While a content network reveals the various con-
tent items produced by a user, it may not show the
user’s underlying topic preferences that give rise to the
production of those content items. The reason is that
content items may be noisy. For instance, in different
interactions, a user may produce different words (e.g.,
“Porsche”, “Ferrari”) that actually refer to the same
topic (e.g., luxury cars). This motivates us to model a
user a’s content as a topic distribution θa,t derived from
the content network at time t. As the content network
evolves, so does a’s topic distribution, i.e., θa,t varies
with t. In the following, we will first model a user’s
topic distribution in a static manner, before moving on
to our proposed temporal-based Decay Temporal Model.

3.1.1 Static Topic Model We observe that the
bipartite structure of the content network resembles

the relationship between documents and words. Just
as a document contains a bag of words, a user is
associated with a bag of content items from various
interactions. As a naive baseline, we consider topic
modeling techniques for text documents in order to
model the static topic distribution of users. One such
technique is Latent Dirichlet Allocation or LDA [5].

LDA can be adapted to our context as follows. To
facilitate the presentation of our model, we introduce a
set theoretic notation to explain the variables. Let Z

denote the set of topics. For each z ∈ Z, φz denotes
the topic z’s item distribution. Each φz is modeled as
a Dirichlet Distribution of V dimensions where V is the
total number of unique content items (non-stop words)
in the interaction network (corpus).

Let A denote the set of users. For each a ∈ A, θa
denotes a’s topic distribution. Each θa is modeled as a
Dirichlet Distribution of K dimensions, where K is the
number of topics in the set Z. To put it more formally,
we have:

φz ∼ Dirichlet(β), β is a constant

θa ∼ Dirichlet(α), α is a constant

Each user a ∈ A participates in a set of interactions de-
noted by Da ⊆ D, where D is the set of all interactions.
Each interaction d ∈ Da contains a set of items Wd.
Then each w is generated by a topic z ∈ Z, and z is in
turn generated by the topic distribution θa of user a.

z ∼ Multinomial(θa)

w|z ∼ Multinomial(φz)

In this static formulation, the problem is to find
the posterior distribution P (φz |D, β), ∀z ∈ Z and
P (θa, |D,α), ∀a ∈ A given the set of interactions D.

3.1.2 Decay Topic Model The above static model
assumes that a user’s topic distribution remains the
same over time. However, in an evolving content
network, a user may produce content items of different
topics over time. We extend the above notations to
model the notion of temporality. Let T denote an
ordered set of discrete time steps with order relation
< such that ∀t1, t2 ∈ T , t1 < t2 implies that t1 is
earlier than t2. ∀a ∈ A, each user a has a topic
distribution θa,t, ∀t ∈ T , where θa,t is modeled as a
Dirichlet Distribution.

θa,t ∼ Dirichlet({αa,t,z}z∈Z)

Unlike the static topic model, each time step t has a
Dirichlet distribution for the topic of user a parameter-
ized by a set of parameters specific to the respective



user and time. Since our focus here is on the evolution
of users’ topic distribution over time, to isolate its ef-
fects, we keep topic item distribution φz the same over
time.

Each user a ∈ A participates in a set of interactions
in time step t as denoted by Da,t ⊆ Dt, where Dt

represents the set of interactions in time t. The
interaction d ∈ Da,t contains a set of items Wd. Then
each w ∈ Wd, w is generated by a topic z ∈ Z and z is
in turn generated by the topic distribution of user a at
time t.

z ∼ Multinomial(θa,t)

Hence, what is of interest to us now is the posterior
distribution in each time step t, P (θa,t|Dt, α), ∀a ∈
A, ∀t ∈ T .

Generative Process. To arrive at this posterior
distribution, we propose the Decay Topic Model, which
we illustrate using the following generative process.

1. At time t, each user a samples their prior topic
distribution θa,t from Dirichlet distribution with
parameters {αa,t,z}z∈Z .

2. User a samples the topic distribution φz, ∀z ∈ Z

from Dirichlet distribution with symmetric param-
eters β.

3. For each interaction d ∈ Da,t, there are a set of
content items Wd. In turn, for each of the |Wd|
items:

(a) User a generates a topic zw from θa,t for the
item w.

(b) User a generates an item w from the topic item
distribution φz .

4. Update the parameters of φz , ∀z ∈ Z.

5. Update the parameters of θa,t to obtain the pos-
terior topic distribution of a at time t. The pos-
terior distribution also follows a Dirichlet distri-
bution with parameters {αa,t,z + na,t,z}, ∀z ∈ Z,
where na,t,z denotes the number of items that user
a produced in time t that belongs to topic z.

6. For every a ∈ A, let the prior topic distribution
of t + 1 be the posterior distribution of t with the
parameters multiplied by a decay factor, δ, such
that 0 ≤ δ ≤ 1. i.e., αa,t+1,z = δ × (αa,t,z +
na,t,z), ∀z ∈ Z, then the prior distribution θa,t+1 =
Dirichlet({αa,t+1,z}z∈Z).

7. Repeat steps 1 to 6 for all the time steps.

Decay Factor. The decay factor δ in step 6 helps
to moderate the rate of change in topic preferences of
users by balancing the contributions of the past time
steps versus the current time step. δ = 1 implies no
decay. δ = 0 implies that we expect the authors to
change their topic distribution at every time step. In
other words, by setting 0 ≤ δ ≤ 1, we want to adjust the
importance of content produced earlier compared with
the recent content for determining the topic distribution
of a. For instance, δ = 0.5 means the preferences of a
accumulated over time drops by half at every time step,
i.e., the half life is one time step. The right setting of
δ may differ in different scenarios. In the experiments,
we conduct parameter sensitivity test to help determine
the best δ setting. In the case where a user has no
interaction at time t, her topic distribution will still
remain the same as at previous time step t− 1.

In this work, δ applies to the whole network. While
it may be argued that δ may vary from user to user,
and from time step to time step, in practice that would
generate too many variables, which we may not be able
to learn effectively.

3.2 Social Dependency Metric Having modeled a
user’s changing topic distribution over time, we now in-
vestigate how to model a user’s evolving social depen-
dency on other users. This evolving social dependency
has been shown in the example as shown in Figure 3. In
our formulation, the key idea is that, for user a to de-
pend heavily on another user c at time t, the following
criteria have to be met:

• Interactions. User a participates in one or more
interactions with c at time t. We assume that when
an interaction between two users is observed at time
t, the actual interaction would have taken place
before t. This is reasonable given that our model
works on time steps that combine interactions from
several time points.

• Content change. User a’s topic distribution
grows to resemble c’s topic distribution in the
previous time step, i.e., between time steps t − 1
and t, a’s topic is becoming more similar to c’s.

Based on the above principles, we propose the Social
Dependency Metric in the form of a vector Ia,t, which
is computed as follows.

Given :

1. The set of interactions Da,t that user a par-
ticipates at time t.

2. Topics associated with the content items, i.e.,
{zw | w ∈

⋃
d∈Da,t

Wd}.



3. Topic distribution θc,t−1 of every user c ∈⋃
d∈Da,t

Ad, who has participated in at least
one interaction with a in the previous time
step t− 1.

Find : Dependency vector Ia,t, where each element
Ia,t(c) is the dependency of a on user c ∈⋃

d∈Da,t
Ad.

Algorithm :

1. Initialize the array Ia,t with zero elements.

2. For each interaction d ∈ Da,t, content item
w ∈ Wd, and user c ∈ Ad,

(a) We determine the generation of topic zw
by a user c as follows:

P (zw|c, θc,t−1) ∝ θc,t−1,zw

(b) Then update array Ia,t as follows,

Ia,t(c) = Ia,t(c) + P (zw|c, θc,t−1)

= Ia,t(c) +
θc,t−1,zw∑

c∈Ad
θc,t−1,zw

3. Normalize the array Ia,t to sum to one for easy
interpretation.

Step 2(b) calculates the contribution of each item w

and its corresponding topic zw to user a’s dependency
on user c. The higher the probability of c generating
this topic, the higher is the value of Ia,t(c). We assume
that the generation of topic zw comes from a linear com-
bination of a’s friends and a herself. The dependency of
a on c should be proportional to how much c is likely to
generate the topic zw. The dependency also accounts for
the frequency of interaction, i.e. the more interactions
a has with c, the higher is the value of Ia,t(c).

We run this computation chronologically for every
time step t = 1 to T to obtain the social dependency
values Ia,t(c) for each a and c across different time steps
t ∈ T .

We explore how the social dependency metric is
affected by the topic modeling of content network. At
each time step t, we want to compare the changes of
a’s topic distribution θa,t and the changes of c’s topic
distribution θc,t−1 for every c in

⋃
d∈Da,t

Ad. Note that
this set of users that a interacts with also contains a

herself. Without any decay factor in the topic modeling,
the accumulative effect over time will favor larger self-
dependency values for a. The decay factor acts to reduce
the importance of topics in previous time steps, allowing
new interactions to change the topic distribution of a in
t significantly enough, so as to better detect a’s social
dependency on others.

4 Experiments

While user interaction networks model many kinds of
interactions, there are only a limited number of datasets
available for research, which track those interactions
over a significant period of time. We work with two
such datasets derived from DBLP and ACM Digital
Library (ACM DL). We model co-authorship as a
user interaction network, where a publication d is an
interaction between one or more authors ai(s) in the
year t. The content items w associated with d are words
in the titles/abstracts. In this setting, we say author a
has social dependency on author c, if a and c co-author
a paper (interact) on topics that a is unlikely, but c is
likely, to publish. We assign social dependency to co-
authors of a based on the likelihood of the co-authors
generating the topics in the papers that a publishes.

After describing the datasets, we will first evaluate
the Decay Topic Model by comparing two settings
(decay vs. non-decay) on the task of predicting an
author’s observed topic distribution in the next time
step. We then evaluate: Social Dependency Metric, by
conducting two prediction tasks. The first task is similar
to the above but with a different approach. Instead of
using an author’s own topic distribution, we use her co-
authors’, weighted by the author’s social dependency
on each co-author. The second task predicts an author’s
ranking of her co-authors by topic similarity at the next
time step using social dependency at the current time
step.

4.1 Datasets For experiments, we use a subset of
publications from DBLP and ACM DL. To ensure a
wide coverage of fields in Computer Science, we use
papers published in the reputable Journal of ACM
(JACM) as a seed set. We grow this seed set by
including other non-JACM publications by authors who
has at least one JACM publication. We extend this
further to also include the co-authors of JACM authors,
and their publications as well.

Table 1: Dataset Sizes
#authors #papers #unique non- period

stop words

DBLP 268,299 546,500 83,440 1936–2011

ACM 157,693 188,086 217,667 1952–2011

The sizes of our datasets are given in Table 1.
DBLP has almost three times as many publications as
ACM DL. One reason is the longer history of publica-
tions maintained by DBLP (since 1936). Another is the
larger scope, since ACM DL focuses mainly on ACM-
related publications. However, ACMDL has many more
unique words than DBLP, because ACM DL has both
titles and abstracts, whereas DBLP only has titles. In



both cases, the datasets are significantly large, with
hundreds of thousands of nodes, with more than 10 mil-
lion author-word links for DBLP and 46 million author-
word links for ACM DL.

Table 2: Top Words for Sample Topics
Web Systems and

Algorithms

Computational Bi-

ology

Database Systems

and Theory

DBLP

web protein data

information gene database

semantic analysis query

based data xml

retrieval database processing

ACM

web data data

information gene query

search protein database

content biological xml

user expression processing

To show that topic modeling on these datasets
would discover the latent topics effectively, we produce
three sample topics, and the top words for each topic
of DBLP and ACM in Table 2. Notably, the top
words (e.g., web, information, retrieval) capture well the
essence of the topics (e.g., Web systems and algorithms).
Moreover, both DBLP and ACM DL discover similar
topics with similar top words, even when DBLP has
only titles and ACM DL has both titles and abstracts.
During experiments, we observe that both datasets
result in similar observations. From here onwards, we
will use the larger dataset DBLP as the main dataset
to discuss our results.

4.2 Evaluating Decay Topic Model The topic
modeling step seeks to arrive at θa,t, the topic distri-
bution of each author a at time t. We hypothesize that
the decay factor allows it to better adapt to the author’s
changing preferences over time. Without decay, the ac-
cumulative effect tends to overweigh the older topics
more heavily. To test this hypothesis, we compare the
topic distributions δ < 1 (θdecaya,t ) and δ = 1 (θnon−decay

a,t )
to the observed topic distribution at the next time step
(θobsa,t+1). For θ

decay
a,t , we vary δ from 0.2 to 0.8 to deter-

mine the optimal setting of δ.
Both θ

decay
a,t and θ

non−decay
a,t incorporate information

from the first time step to the current time step t. We
compare them to θobsa,t+1, which is derived independently
using only the set of documents published by a at time
t+1. If θdecaya,t is more similar to θobsa,t+1 than θ

non−decay
a,t ,

it shows that the decay approach is better adapted to
the preferences in t+ 1.

To measure similarity between two probability dis-
tributions p and q, we use the following function:

Sim(p, q) = 1−DJS(p, q),

where DJS is the Jensen-Shannon Divergence [16]. Sim
ranges from 0 (different) to 1 (identical).

We use this Sim function to measure the similarity
between θ

decay
a,t and θ

non−decay
a,t respectively to θobsa,t+1.

To compare the decay vs. non-decay setting directly,
we then take the ratio of the two similarity values as
follows:

Sim Ratio Φ(a, t) =
Sim(θdeltaa,t , θobsa,t+1)

Sim(θnon−decay
a,t , θobsa,t+1)
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Figure 4: DBLP: Mean of Sim Ratio Φ(a, t)

Φ(a, t) ratio > 1 indicates that having the decay
is better than no decay. Figure 4 shows the mean of
values given by the Sim Ratio Φ(a, t) with respect to
the different δ values. Given that the values lie above 1,
it indicates that that having some decay is better than
no decay at all. From the various choices of δ, we can
see that the optimal value of δ lies between 0.4 to 0.5.
For the rest of our experiments we therefore use δ = 0.5.

4.3 Prediction of Author’s Topic Distribution

We now show that our dependency values at t can
also be used for the prediction of author a’s topic
distribution in t + 1. In this case, the predicted
topic distribution for a at time t + 1 will be a linear
combination of the topic distributions at time t of
her co-authors c ∈

⋃
d∈Da,t

Ad, weighted by the social

dependency values Ia,t(c).
Hence, if one set of dependency values arrive at a

better estimation of the author’s topic distribution than
another set of dependency values, it implies that the
former more accurately estimate the social dependency
weight of each co-author.

Due to the way in which we extract the subset of
data from DBLP and ACM DL, we can only evaluate



for the authors who have at least one JACM paper.
For these authors, we have the complete co-authors
information, while for the rest of the other authors, we
have only partial information.

Decay vs. Non-decay. To evaluate our topic pre-
diction, we use the Sim Ratio Φ(a, t) as defined earlier to
compare against the observed topic distribution at t+1
(based on only the documents published at time t+ 1)
as ground truth. The first comparison is again for decay
vs. non-decay, but this time the prediction is based not
on the author’s own topic distribution, but rather on her
co-authors’. We derive two predicted topic distributions
at t+ 1, θdep−d

a,t+1 and θ
dep−nd
a,t+1 . θdep−d

a,t+1 is computed using

the dependency value Idecaya,t (c), for each c ∈
⋃

d∈Da,t
Ad

by the decay topic distribution. θdep−nd
a,t+1 is computed us-

ing the dependency values Inon−decay
a,t (c), c ∈

⋃
d∈Da,t

Ad

by the non-decay topic distribution.
User a’s predicted preference for topic z at time t+1

is computed as follows.

θ
dep−d
a,t+1,z =

∑

c∈
⋃

d∈Da,t
Ad

I
decay
a,t (c) ∗ θdecayc,t,z

θ
dep−nd
a,t+1,z =

∑

c∈
⋃

d∈Da,t
Ad

I
non−decay
a,t (c) ∗ θnon−decay

c,t,z

We then compute the Sim Ratio Φ1(a, t) as follows.

Sim Ratio Φ1(a, t) =
Sim(θdep−d

a,t+1 , θobsa,t+1)

Sim(θdep−nd
a,t+1 , θobsa,t+1)

Φ1(a, t) ratio > 1 would indicate that the depen-
dency values computed by decay topic distribution give
a better prediction than the dependency values com-
puted by the non-decay topic distribution. Figure 5(a)
shows a histogram of Φ1(a, t) values. The x-axis of the
histogram are bins with boundaries given by the value
of Φ1(a, t). The y-axis of the histogram indicate the fre-
quency of author a and time point t pairs falling into the
respective bins. For Figure 5(a), 68% of the (a, t) pairs
have Φ1(a, t) > 1, 1% have Φ1(a, t) = 1 and 31% have
Φ1(a, t) < 1. This suggests that incorporating the decay
factor results in an improvement for the large majority
of (a, t) pairs.

Dependency vs. Co-authorship Count. As
another baseline, we use a naive way of computing social
dependency weight Ibasea,t (c), c ∈

⋃
d∈Da,t

Ad, which
considers a’s dependency on c at t as the count of
papers co-authored by a and c, normalized by the
total count of a’s papers, at time t. Using such social
dependency weights, we compute the predicted topic

distribution θbasea,t+1, and compare this to the dependency-

based prediction θ
dep−d
a,t+1 .

θbasea,t+1,z =
∑

c∈
⋃

d∈Da,t
Ad

Ibasea,t (c) ∗ θdecayc,t,z

For this comparison, we compute the Sim Ratio Φ2 as
follows.

Sim Ratio Φ2(a, t) =
Sim(θdep−d

a,t+1 , θobsa,t+1)

Sim(θbasea,t+1, θ
obs
a,t+1)

Φ2(a, t) > 1 indicates that the dependency method
outperforms the baseline. Figure 5(b) shows a his-
togram of Φ2(a, t) values. In the figure, 62% have
Φ2(a, t) > 1, 1% have Φ2(a, t) = 1 and 37% have
Φ2(a, t) < 1. This implies that in most cases, the de-
pendency method tends to arrive at a better prediction
than the co-authorship baseline.
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Figure 5: DBLP

Result Analysis. We now seek to understand bet-
ter the profiles of users for which our method works
especially well. As mentioned previously, Sim Ratio
Φ(a, t) > 1 indicates that our method performs better
than the baseline at predicting an author’s topic distri-
bution. Most authors are active for more than one year,
and each year gives a different Sim Ratio. Hence, the
proportion of years in which Φ(a, t) > 1 for a given au-
thor indicates the degree to which the user has benefited
consistently from our proposed method.

To measure this, we introduce the following metric:

Ψ(a) =
number of years where Φ > 1 for a

number of years a publishes
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Figure 6: DBLP

Figure 6(a) shows the histogram of Ψ(a) values
for various users, for a comparison against the non-
decay baseline (i.e., Φ1(a, t) > 1). Figure 6(b) shows
the corresponding histogram of Ψ(a), for a comparison
against the co-authorship baseline (i.e., Φ2(a, t) > 1).
The red line in both figures indicate the median value
of Ψ(a) among the authors. In both cases, the median
lies close to 0.7, which implies that a majority of users
benefit from our proposed method at least two thirds of
the time. In order for us to understand why we are
able to predict the topic distribution of some authors
and not the others, we examine the Ψ(a) of each author
with respect to some factors. Figures 7, 8 and 9 show
the boxplots of Ψ(a) with respect to their number of
active years, the total number of papers published and
the number of co-authors they worked with over the
entire duration of their careers. The bins in the boxplots
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Figure 7: DBLP: Ψ(a) vs Number of Active Years
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Figure 8: DBLP: Ψ(a) vs Number of Published Papers

are determined by having equal number of data points
and the labels on the x-axis represent the mean value of
the data points in each bin. The figures collectively tell
the story of better performance for authors with higher
number of active years, papers, and co-authors. This
suggests that we tend to do better when there is more
information for a given author. The consistency and the
degree to which an author interacts with others allow
better inference of not just their topic distributions, but
also their social dependency values.

4.4 Prediction of Co-Author’s Topic Similarity

Ranking In this section, we perform co-author’s topic
similarity ranking prediction at time t + 1 using social
dependency at time t. At time t, an author a has social
dependency value of Ia,t(c) on a co-author c. Assuming
that a usually does not change the social dependency on
her co-authors drastically over two time steps, we expect
the ranking of her co-authors by social dependency at
time t would be a good predictor for the ranking at time
t + 1. Since a does not necessarily have identical sets
of co-authors in t and t+ 1, the ranking prediction will
only involve the co-authors appearing in both t and t+1.
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Figure 9: DBLP: Ψ(a) vs Number of Co-Authors

Similar to the previous experiment, we only evaluate for
authors who have at least one JACM paper.

In this task, we denote the ground truth ranking
of co-authors by topic similarity as Rsim. We derive
Rsim for an author a at time t + 1 as follows. For
each co-author c of a, we obtain the “observed” topic
distribution θobsc,t+1 using only publications by c at time
step t+ 1. We then compute the similarity between c’s
topic distribution θobsc,t+1 with author a’s observed topic

distribution θobsa,t+1 using the Sim function as defined
earlier in Section 4.2. Finally, we obtain the ranked
list by sorting a’s co-authors in descending order of the
similarity values.

We compare the Rsim of a at time t + 1 (ground
truth) with the following two ranked lists:

1. Social Dependency. Rdep ranks co-authors in terms
of Ia,t(c).

2. Co-authorship Baseline. Rbase ranks co-authors in
terms of the number of co-authored papers at time
t.

We derive the pair-wise rank correlations between
Rdep (or Rbase) and Rsim using Kendall Tau Rank Cor-
relation Coefficient (tau coefficient) [12], which is a mea-
sure of correlation between two ranked lists where 1 rep-
resents full positive correlation, -1 represents full nega-
tive correlation and 0 represents no correlation. Hence,
if tau(Rdep, Rsim) is higher than tau(Rbase, Rsim), it im-
plies that the proposed social dependency metric has
higher predictive value than the baseline co-authorship
method. To perform this comparison, we first com-
pute the Rsim, Rdep, and Rbase for all authors. We
then bin the authors into five equisized bins according
to their tau(Rdep, Rbase). The bin with the smallest
values group authors for which Rdep and Rbase are most
different. The bin with the highest values group authors
for which Rdep and Rbase are most similar.
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Figure 10: DBLP

We then look at the distribution of tau(Rdep, Rsim)
values in each bin. Figure 10(a) shows a boxplot rep-
resentation of tau(Rdep, Rsim) distributions (y-axis) for
each of the five tau(Rdep, Rbase) bins (x-axis). The num-
ber shown in the x-axis is the mean within each bin. The
red line in each box represents the median value, edges
of the blue box represents the 25th and 75th percentiles,
the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted indi-
vidually. Figure 10(b) shows the corresponding boxplot
representation for the baseline tau(Rbase, Rsim).

Comparing Figure 10(a) (proposed) and Fig-
ure 10(b) (baseline), we observe that for each bin, the
boxplots in Figure 10(a) consistently show higher me-
dians (higher similarity to the ground truth) than the
boxplots in Figure 10(b). As the previous figures cap-
ture only the DBLP dataset, we repeat a similar ex-
periments for the ACM dataset as well. The results for
ACM are given in Figures 11(a) and 11(b), where similar
observations can be made to support the higher predic-
tion performance of Rdep, as compared to the baseline
Rbase.
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Figure 11: ACM

4.5 Case Study Using DBLP, we provide a case
study to help illustrate the workings of our proposed
social dependency model. For this case study, we use
the profile of Associate Professor Duminda Wijesekera.
Figure 12 shows the social dependencies of Duminda
Wijesekera for the year 2001. The directed edges show
Duminda Wijesekera’s dependencies on his co-authors
who publish with him in the year 2001. Next to these co-
authors are their respective topic distributions for year
2000. From the year 2000 to 2001, we observed that
Duminda Wijesekera’s topic in Security has increased
from third position to first position [30]. Based on the
dependencies, we observe that he depended on Sushil
Jajodia most as compared to other co-authors (exclud-
ing himself). Based on the co-authors topic distribution,
Sushil Jajodia’s topic in Security is the highest which ex-
plains why Duminda Wijesekera’s dependency on Sushil
Jajodia is the highest [6]. In 2002, Duminda Wijesek-
era continues to increase his topic in Security [29, 31].
This illustrates how social dependency works based on
the two components of interactions as well as content
change.
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5 Conclusion

In this paper, we address the problem of modeling
the evolution of user interaction networks, in order to
determine the social dependency weights among users
at various time steps. We identify two primary factors
to social dependency, namely: interactions between
users, and temporal correlation between the users’ topic
distributions. We propose a Decay Topic Model to
model a user’s evolution of content at the topic level,
as well as a Social Dependency Metric to determine the
degree to which a user is dependent on another user.
Comprehensive experiments on real-life co-authorship
datasets DBLP and ACM show that our proposed
models perform well against the baseline (co-authorship
count) in two predictive tasks: predicting an author’s
ranking of co-authors by social dependency, as well
as predicting the author’s topic distribution in the
next time step. This validates our hypothesis that
we also need to take into account the changing topic
preferences of users beyond just interactions (which the
co-authorship baseline only models indirectly). For
future work, we aim to incorporate additional factors
to further improve the model. One is to learn the decay
factor δ automatically. Another is to incorporate the



magnitude (e.g., number of interactions) in addition
to topic distribution in determining social dependency
between users.
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